An improved biogeography based optimization approach for segmentation of human head CT-scan images employing fuzzy entropy

نویسندگان

  • Amitava Chatterjee
  • Patrick Siarry
  • Amir Nakib
  • Raphaël Blanc
چکیده

The present paper proposes the development of a three-level thresholding based image segmentation technique for real images obtained from CT scanning of a human head. The proposed method utilizes maximization of fuzzy entropy to determine the optimal thresholds. The optimization problem is solved by employing a very recently proposed population-based optimization technique, called biogeography based optimization (BBO) technique. In this work we have proposed some improvements over the basic BBO technique to implement nonlinear variation of immigration rate and emigration rate with number of species in a habitat. The proposed improved BBO based algorithm and the basic BBO algorithm are implemented for segmentation of fifteen real CT image slices. The results show that the proposed improved BBO variants could perform better than the basic BBO technique as well as genetic algorithm (GA) and particle swarm optimization (PSO) based segmentation of the same images using the principle of maximization of fuzzy entropy. & 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Registration-based Fuzzy Segmentation of MRI Head Images

A hybrid medical image segmentation framework (concentrating mainly on Magnetic Resonance Imaging and Computed Tomography head images) making use of information theory methods (image entropy, mutual-information-based registration), fuzzy logic and elements of atlas-based techniques is presented in the report. Information theory provides a way to create highly automated systems, while fuzzy logi...

متن کامل

Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...

متن کامل

New approach for attenuation correction in SPECT images, using linear optimization

Background: Photon attenuation as an inevitable physical phenomenon influences on the diagnostic information of SPECT images and results to errors in accuracy of quantitative measurements. This can be corrected via different physical or mathematical approaches. As the correction equation in mathematical approaches is nonlinear, in this study a new method of linearization called ‘Piece ...

متن کامل

A Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images

Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2012